close

下圖為AlexNet的結構圖,

下圖也是AlexNet的結構圖,

只是把中間部分拆成兩半作處理,

主要由5層Convolution Layer+3層Fully-Connected Layer所組成

 

下面為AlexNet結構第一種寫法:

import torch.nn as nn

class AlexNet(nn.Module):

    def __init__(self):

        super(AlexNet, self).__init__()

        self.conv1 = nn.Sequential( #227*227*3

                nn.Conv2d(3, 96, 11, 4, 0), #55*55*96

                nn.ReLU(),

                nn.MaxPool2d(3, 2))  #27*27*96

        self.conv2 = nn.Sequential(

                nn.Conv2d(96, 256, 5, 1, 2), #27*27*256

                nn.ReLU(),

                nn.MaxPool2d(3, 2)) #13*13*256

        self.conv3 = nn.Sequential(

                nn.Conv2d(256, 384, 3, 1, 1), #13*13*384

                nn.ReLU())

        self.conv4 = nn.Sequential(

                nn.Conv2d(384, 384, 3, 1, 1), #13*13*384

                nn.ReLU())

        self.conv5 = nn.Sequential(

                nn.Conv2d(384, 256, 3, 1, 1), #13*13*256

                nn.ReLU(),

                nn.MaxPool2d(3, 2)) #6*6*256

        self.dense = nn.Sequential(

                nn.Linear(9216, 4096),

                nn.ReLU(),

                nn.Dropout(0.5),

                nn.Linear(4096, 4096),

                nn.ReLU(),

                nn.Dropout(0.5),

                nn.Linear(4096, 1000))

 

    def forward(self, x):

        conv1_out = self.conv1(x)

        conv2_out = self.conv2(conv1_out)

        conv3_out = self.conv3(conv2_out)

        conv4_out = self.conv4(conv3_out)

        conv5_out = self.conv5(conv4_out)

        res = conv5_out.view(conv5_out.size(0), -1)

        out = self.dense(res)

        return out

下圖為model輸出結果:

 

下面為AlexNet結構第二種寫法(使用官方預設的):

import torchvision

model = torchvision.models.AlexNet()

可以導入預訓練的model權重, 只要在()內填入pretrained參數即可, 如下:

import torchvision.models as models

model = models.AlexNet(pretrained=True)

下圖為model輸出結果:

arrow
arrow
    文章標籤
    alexnet python pytorch
    全站熱搜
    創作者介紹
    創作者 楓綺 的頭像
    楓綺

    K_程式人

    楓綺 發表在 痞客邦 留言(0) 人氣()