=====method 1=====
保存神經網路的結構與訓練好的參數
json_string = model.to_json()
open('model_architecture.json', 'w').write(json_string)
model.save_weights('model_weights.h5')
載入先前的model與weights
import h5py from keras.models import model_from_json
model = model_from_json(open('model_architecture.json').read())
model.load_weights('model_weights.h5')
=====method 2=====
保存model結構以及weights為一個HDF5檔案
'''
...
model = conv2D(....)
model = maxpooling2D(...)
....
'''
model.save('model.h5') #create a HDF5 file to save model
del model #deletes the existing model
重新載入以保存的model
from keras.models import load_model
model = load_model('model.h5')
model.summary()
留言列表